
J Glob Optim (2010) 47:247–271
DOI 10.1007/s10898-009-9472-5

A fast memoryless interval-based algorithm for global
optimization

M. Sun

Received: 17 November 2008 / Accepted: 7 September 2009 / Published online: 19 September 2009
© Springer Science+Business Media, LLC. 2009

Abstract We present a global optimization algorithm of the interval type that does not
require a lot of memory and treats standard constraints. The algorithm is shown to be able
to find one globally optimal solution under certain conditions. It has been tested with many
examples with various degrees of complexity and a large variety of dimensions ranging from
1 to 2,000 merely in a basic personal computer. The extensive numerical experiments have
indicated that the algorithm would have a good chance to successfully find a good approxi-
mation of a globally optimal solution. More importantly, it finds such a solution much more
quickly and using much less memory space than a conventional interval method. The new
algorithm is also compared with several noninterval global optimization methods in our
numerical experiments, again showing its clear superiority in most cases.

Keywords Global optimization · Interval-based algorithm · Memoryless · Constraints

1 Introduction

Many important real world problems aim at finding the globally optimal value of an objec-
tive function f(x) and at least one global optimizer over a bounded multidimensional interval
domain X in Rn, possibly subject to some equality and inequality constraints. Mathematically
the problem is stated as

minimize f(x),

subject to h(x) = 0, g(x) ≤ 0, x ∈ X.
(1)

The global problem presents a number of more difficult challenges than local optimization
problems. The most difficult issue is perhaps the lack of a single verifiable sufficient con-
dition for a globally optimal solution unless it is a very special case. Thus, either a global

M. Sun (B)
Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487-0350, USA
e-mail: msun@gp.as.ua.edu

123



248 J Glob Optim (2010) 47:247–271

behavior of f(x) (e.g., Lipschitz constant [5]) is used or the entire search domain is examined
by global search algorithms.

Stochastic algorithms search the whole domain only in a probabilistic fashion so that at
most they can yield a good estimate of a globally optimal solution in a probabilistic sense.
Thus, when such a particular search program stops after a finite number of steps, there is
no reliable way to judge the quality of the estimated solution. They are often considered
as heuristic. However, stochastic search methods (such as the simulated annealing methods
and genetic algorithms) have been more popular choices than interval methods because of
their simplicity of implementation, relative quickness for reaching an approximate solution,
less memory demands, and a wider range of applicable problems. Many stochastic search
methods have been designed for solving unconstrained problems. Under the presence of
constraints, their performance deteriorates further and there are even fewer theoretical justi-
fications.

Deterministic algorithms offer attractive alternatives for solving problem (1). They are
generally based on the idea of branch and bound [15]. Among them, interval methods offer
both sound theoretical foundation and reliable numerical solutions [20]. Under the frame-
work of interval branch and bound, a number of advantages are well known. (1) It guarantees
convergence to all global solutions under fairly weak assumptions. (2) It offers reliable
stopping criteria so that the algorithm does not have to run longer than necessary. (3) It is
numerically robust and handles round-off errors conveniently and effectively. (4) It handles
constraints with relative ease and without jeopardizing theoretical justifications. Despite such
attractive features of the interval method, most published reports on their applications seem
to be generally limited to optimization problems in low dimensions (say, much less than
100 according to our recent survey of literature). Obviously, there are three major concerns
in solving large dimensional problems: large amount of memory space, slow speed of con-
vergence, and requirement of acceptable bounds of the objective function over any interval
subdomains. The last of the three is generally not specific to the dimension of problem (1).
It is rather tied to the nature of the problem itself. Thus our new algorithm aims at easing the
first two concerns only. Although interval algorithms can converge exponentially to the glob-
ally optimal objective function value [6], the number of subboxes to be saved and processed
in an interval method could also increase exponentially with the dimension of the search
domain. That raises memory requirement and slows down convergence. This could prevent
any conventional interval method from becoming a practical choice for solving many large
scale optimization problems. If the memory problem can be significantly alleviated, speed
of convergence would be greatly improved. Consequently, interval methods would become
more attractive than noninterval methods at least for the optimization problems where the
function bounds are available.

Inspired by such observations, we have investigated some new strategies associated with
the interval branch and bound methodology both theoretically and numerically. This paper
reports one new version of the interval-based algorithm that shows improvement both in
memory space usage and in overall speed of convergence. It is in fact essentially memoryless
and yet still converges to a globally optimal solution in many cases. When it converges, it
does so much more quickly than the standard interval method.

The rest of the paper is organized as follows. In Sect. 2, we review major features of
the standard interval method. Our new algorithm is presented in Sect. 3 along with theoreti-
cal convergence results. Numerical testing results for a relatively large pool of examples are
given in Sect. 4, followed by final comments and conclusions in Sect. 5. Finally 15 repeatedly
used examples with variable dimensions are listed in the appendix.

123



J Glob Optim (2010) 47:247–271 249

2 Standard interval method

The standard branch and bound method was originally introduced in [8] and [14], and more
recently presented in [15]. Its main idea is the recursive refinement of partition of the search
domain and underestimation (providing guaranteed lower bound) of f(x) over the partitioned
subdomains. Interval methods (e.g., [1,12,21,22,25]) are in the general framework of branch
and bound along with interval arithmetic. The interval arithmetic provides an effective means
of underestimation of programmable functions, and offers an additional benefit of includ-
ing roundoff errors. Following the initial works in late 1950s and early 1960s, research on
interval methods became a more heated topic from late 1970s to early 1990s among many
researchers in several fields. During that period of time, computers were becoming increas-
ingly more popular and more powerful. Improved computer programming languages also
helped promotion of interval methods. A solid foundation had been laid by the end of 1980s.
Subsequent improvements were done since 1990s (e.g., [4,5,17,24,29,30,33]). Our list of
references is not meant to be complete.

Let f∗ be the global minimum value of the objective function f(x), x∗ a global minimizer
in X, and X∗ the set of all the global solutions. As in the interval analysis literature, we use
boxes and intervals interchangeably. A typical interval method uses 2 major objects, a list
L that holds all the subintervals of partitions that remain to be processed, and an inclusion
function F(Y) that offers a lower bound and an upper bound of f(x) over any box Y to be
processed. We write

F(Y) = [Lb(F(Y)), Ub (F(Y))] .

Later in the next section we also use

Inf (f(Y)) = Inf {f(x) : x ∈ Y} .

The general procedure would consist of these major steps.

Algorithm 1 (Standard interval algorithm for global optimization)

1. Initialization. Set the list L = φ. Set the working box Y = X.
2. Subdivision of Y. The algorithm splits up Y into subboxes. Usually, bisection is used for

this purpose. Add the resulting subboxes to L.
3. Deletion conditions: To increase efficiency of the method, unwanted boxes V (where

no global minimizer can be located) need to be identified and then deleted. The most
commonly used deletion condition is based on f-values.

fbest < Lb (F(V)) , (2)

where fbest is the currently known best value of the objective function (or its upper bound).
The deletion condition (2) is similar to the so-called midpoint test [16]. fbest is usually
updated by sampling the midpoint of the working box [16] or any other special box [12].
When constraints are present in (1), each processing subbox can be checked against
the constraint satisfaction requirements. By using an inclusion function for each of the
constraint functions, one can tell if a subbox is definitely infeasible or indeterminate.
Definitely infeasible subboxes can be deleted. Other deletion conditions are possible,
including the ones using information on derivatives of f(x).

4. Selection of a new working box Y from L.

123



250 J Glob Optim (2010) 47:247–271

5. Termination criterion. Obviously, any interval algorithm stops if there are no more boxes
to be processed (the list is empty). For instance, this situation occurs when the original
constrained problem is actually infeasible. But practically, it may stop earlier according
to some other termination criteria.

Two well known early versions of interval methods (Ichida-Fujii and Hansen) fall into this
framework. Ichida-Fujii’s algorithm selects a new working box based on the smallest lower
bound of inclusion function, while Hansen’s algorithm selects a new working box based on
the oldest age or on the largest size. Actually, there was another early version of Moore-
Skelboe [27]. But that version didn’t use any deletion conditions. Thus it does not quite fit
the standard framework stated above. By now, there are a large variety of implemented ver-
sions of the interval method (e.g., [4,24,29,33]). There are also several accelerating devices
reported in the literature. Interval methods have been used for solving many different kinds
of mathematical problems: optimization of functions, systems of linear and nonlinear equa-
tions, ordinary differential equations, partial differential equations, and optimal controls, just
to name some. A quick survey of a large number of published reports on their applications
seems to indicate that they are generally limited to problems in low dimensions (say, much
less than 100 in most cases). Obviously, there are indeed two major concerns in solving large
dimensional problems: large amount of memory space required to hold boxes for further
processing, and slow speed of convergence due to a large number of boxes to be processed.
These two disadvantages are usually considered as unavoidable since most optimization
problems are NP-hard (e.g., [31]). Although interval algorithms can converge exponentially
to the globally optimal objective function value [6], the number of subboxes to be saved and
processed in a standard interval method could also increase exponentially with the dimension
of the domain. That raises memory requirement and slows down convergence. These two
disadvantages of the interval methods may also occur when the structure of the optimization
problem is too complicated or the inclusion function is not tight enough so that not many
boxes could be deleted.

Maintaining a memory structure is seen as a very common strategy in many global optimi-
zation methods. Several examples can be mentioned for this purpose. Genetic algorithms and
its variations explicitly maintain a population of candidate solutions. The size of this mem-
ory structure is normally fixed and predetermined. But the “best” size is generally problem
dependent. Tabu search [10] maintains a tabu list that represents information about recently
visited solutions. The length of tabu list is usually fixed as well. A standard interval algorithm
keeps track of a list of all the subboxes that might contain some global solutions. The size of
such a list is typically unlimited. In case unisolated global solutions exist, this list can grow
very quickly without a finite bound. In order to reach theoretically guaranteed convergence
of all the optimal solutions, all those boxes must be processed enough times. Thus this could
lead to a computational nightmare, making the theoretical guarantee practically fruitless.
A more general branch-and-bound method works in a similar way, but without necessarily
using interval arithmetic. Of course, there exist global search algorithms that do not use
any memory mechanism. Instead, they rely on randomness to have a chance to get close to
a global solution. Such algorithms include random search and simulated annealing. How-
ever, the random search is never considered as an effective global search method. Simulated
annealing is believed to outperform the random search due to its Metropolis criterion used
to overcome thermal energy barriers in order to escape from local solutions. There is even a
memory-based version of simulated annealing [2]. Finally we point out that even some local
search methods also employ a memory structure. One typical example is the BFGS quasi-
Newton method where an approximate inverse Hessian matrix has to be memorized between

123



J Glob Optim (2010) 47:247–271 251

two consecutive iterations of update. The size of this memory structure is also considerable
when n is large.

3 Memoryless interval-based algorithm and its convergence

The standard interval method will capture all the global solutions since its final list would
include X∗. As long as every box in the list has a chance to be processed infinitely often,
those global solutions can be positively identified to any desired degree of accuracy if no hard
limits are prescribed. Such a nice guarantee does come with a significant overhead cost in
terms of memory space and CPU time consumption. It is also worthwhile to point out that the
standard Ichida-Fujii interval algorithm does not delete any global solution. But still only one
global solution is guaranteed to be estimated accurately. The other global solutions cannot be
pinpointed to a desired precision because they are buried in the huge memory structure and
do not get processed enough during the course of algorithm. Fortunately, not many practical
optimization problems really require all the global solutions. In fact, most optimization meth-
ods do not find all of global solutions. But they are still extensively used in practice anyway.
For example, local optimization methods and stochastic global optimization methods have
been widely used. But none of them actually finds all the global solutions. Some of them
even do not get any global solution at all. It is commonly believed that any optimization
method that is capable of identifying one global solution or a good estimate of one global
solution within a reasonable time frame would be of a good practical value. Thus, in our
memoryless interval-based algorithm, we only target one global solution in a way similar to
Ichida-Fujii interval algorithm. But for the other global solutions, we no longer commit any
computer memory and CPU time since they may not be extracted accurately anyway. We
trade the loss of other global solutions with much improved memory requirement and much
faster convergence speed. Our main focus of improvement will be on the list L used in the
regular interval algorithms. We actually abandon the list completely, breaking away from the
standard memory philosophy of the interval method and the branch-and-bound method in
general.

Algorithm 2 (Memoryless interval-based algorithm for global optimization)
Given f(x), X, and F(.).

Step 1. Initialization:

Step 1a. Set a working interval Y = X.
Step 1b. Get F(Y).

Save fbest = f(c), where c = Mid(Y).

Step 1c. Set y = Lb(F(Y)).

Step 2. Update:

Step 2a. Take any k in {i : Wid(Y) = Wid(Yi)}, where Y = Y1 × Y2 · · · × Yn.
Step 2b. Bisect Y normal to the coordinate direction k, obtaining intervals V1 and

V2.
Step 2c. Get F(V1) and F(V2).
Step 2d. Set y1 = Lb(F(V1)), y2 = Lb(F(V2)).

123



252 J Glob Optim (2010) 47:247–271

Step 2e. Deletion. Check deletion condition(s) to see if V1 and V2 can be deleted.
For example,

fbest < yi → Delete Vi, for i = 1, 2.

Step 2f. Selection. The smaller of y1 and y2 surviving from the deletion becomes
y, and the corresponding Vi becomes Y.

Step 2g. Update fbest = min{fbest, f(c)}, where c = Mid(Y).

Step 3. If one of the prescribed termination criteria holds, then stop with output:

f∗ ∼= y, f∗ ∈ F(Y), x∗ ∼= Mid(Y).

Step 4. Go to Step 2.

This is an interval-based algorithm with the least amount of memory requirement. Thus
it is likely the fastest. However, we need to justify both theoretically and numerically that
under certain conditions, this drastic reduction of memory won’t prevent the algorithm from
finding a good estimate of one global solution. In the remainder of this section, we present
some theoretical results about the properties of the algorithm. A large amount of supporting
numerical evidence will be postponed until the next section.

Annihilation of the list from the framework of regular interval algorithm drastically alters
the characteristics of the interval algorithm. It is obvious that the new algorithm can capture
at most one global solution instead of all the global solutions for the standard version. It is
our hope that one global solution will be retained for sure under appropriate conditions. In
the other cases, the algorithm would reach a global solution at an acceptable success rate.
But retaining one global solution would demand certain properties of the inclusion function
F(.). We state a set of sufficient conditions in the following theorem.

Theorem Let f(x) have a finite number of global solutions and its inclusion function F(.)
satisfy

Wid(F(Y )) ��� 0 as Wid(Y ) ��� 0.

Furthermore, Lb(F(U))<Lb(F(V)) whenever Inf(f(U)) < Inf(f(V)) and U ◦ ∩ V◦ = φ. Let
{(yk, Yk)} be the sequence generated by the algorithm, and {fk} the fbest sequence. Then the
following statements hold.

(a) Wid(Yk) → 0.
(b) Yk contains at least one global solution.
(c) Yk contains at least one xk with f(xk) = fk .
(d) At least one box should survive the deletion step. In other words, the algorithm should

always exit at Step 3.
(e) yk → f∗, fk → f∗,
(f) xk → x∗, Mid(Yk) → x∗ for some x∗ ∈ X∗.

Proof
(a) It follows from the fact that the bisection is done perpendicular to the direction of the

maximum side of Y.
(b) In view of mathematical induction arguments and the theoretical convergence analysis

of a list-based interval algorithm in [29] or some other references, we just need to make
sure that the selected box in Step 2f would contain at least one global solution, provided
that the previously selected box does so. Note that

f∗ = min{Inf(f(V1)), Inf(f(V2))}.

123



J Glob Optim (2010) 47:247–271 253

The minimizing box above would contain a global solution. That minimizing box is
also the selected box in Step 2f of the algorithm by applying the stated assumption to
V1 and V2 if Inf(f(V1)) 	= Inf(f(V2)). When Inf(f(V1)) = Inf(f(V2)), the selected box
would also contain a global solution.

(c) According to Step 2g, fk ≤ f(Mid(Yk)). From (b) above, we have

f∗ = inf {f(x) : x ∈ Yk} .

Thus

inf {f(x) : x ∈ Yk} ≤ fk ≤ f (Mid(Yk)) .

Hence the desired result follows from the intermediate value theorem as f(x) is at least
continuous.

(d) From (c), f(xk) = fk. Thus

yk = Lb (F(Yk)) ≤ f(xk) = fk,

which violates the deletion condition. So as one of V1 and V2 in the algorithm, Yk

should survive the deletion step.
(e) It follows from (a)–(c) in view of the first assumption on F(.).
(f) It follows from (a) and (e). 
�
Corollary When the inclusion function is perfectly tight, the new algorithm is guaranteed
to converge to a global solution.

It is well known that the first assumption on F(.) is used to guarantee global convergence

min {Lb(F(V)) : V ∈ Lk} → f∗

for the Moore-Skelboe algorithm and the Hansen algorithm (as well as many other interval
algorithms), where Lk is the list at iteration k. Without further assumptions on the inclusion
function F(.), the Moore-Skelboe algorithm can converge arbitrarily slowly [25]. However,
if F(.) is assumed to be of order α, then the Hansen algorithm offers this exponential conver-
gence

f∗ − Lb(F (Yk) ≤ C (2Wid(X))α (k + 1)− α /n.

The same exponential convergence was established in [6] for the Moore-Skelboe algorithm
when F(.) is further assumed to be isotonic. Thus it is reasonable to impose additional assump-
tions in order to guarantee theoretical convergence. One such additional assumption is stated
in the theorem that ensures convergence of the memoryless algorithm to one global solution.
That is the main difference between the two versions as far as the theoretical convergence
properties are concerned. However, the guaranteed convergence to a global solution under
the extra condition sets the new memoryless algorithm apart from typical heuristic global
search methods where no such conditional guarantee is available (e.g. [23]).

Although the theorem only states sufficient conditions for convergence, our numerical
test results will show that even when the stated sufficient conditions are not completely sat-
isfied, our algorithm can still have a good chance to find one global solution. For example,
function #8 listed in the appendix clearly violates the assumptions of the theorem. But we
have confirmed that the new algorithm found one global solution successfully even when
n = 2,000. Thus the new interval-based algorithm offers these good convergence character-
istics: quick to reach an end of execution, little memory space requirement, good success
rate in the general situation (although not always 100%). It is applicable in a much wider

123



254 J Glob Optim (2010) 47:247–271

range of optimization problems than the standard interval method because of much improved
memory requirement and convergence speed. In view of the corollary above, we also believe
that the tighter the inclusion function the greater the reliability of the new algorithm. The
assumptions of the theorem might not be satisfied if the inclusion function F(.) is not tight
enough in some uniform fashion. In those cases, the new algorithm might be thought of as
an interval-based heuristic global search method. Thus it offers a good compromise between
guaranteed global search methods and heuristic ones. It possesses a good degree of reliability
and a fast pace of convergence as confirmed by a large amount of numerical evidence shown
in the next section.

When constraints are present in (1), the algorithm can be adjusted to handle them. Let us
point out such adjustments as follows.

(a) Initialization. If an initial feasible solution is available, use its objective function value
to initialize fbest. Otherwise, fbest is set to a nominal value which could be a fairly large
number if nothing about a feasible f-value is known. In our numerical experiments, a
penalized objective function value of an infeasible initial solution is used as the starting
nominal fbest-value (the worst case scenario).

(b) Feasibility tolerance and additional deletion conditions.

Feasibility tolerances are defined by these two parameters.
εh = a small threshold of absolute value of the equality constraint functions. Any active

box V with Hi(V) lying outside [− εh, εh] will be designated as inactive (hence deleted) due
to violation of the equality constraint hi(x) = 0.

εg = a small threshold of upper bound of the inequality constraint functions. Any active
box V with Gj(V) lying outside (−∞, εg] will be considered as inactive (thus deleted) due
to violation of the inequality constraint gj(x) ≤ 0.

(c) Additional exit point at end of Step 2e. If there is no surviving box at end of Step 2e,
we would exit the algorithm and conclude that there is no optimal solution with f-value
at least as small as fbest. In particular, if the initial fbest was set to a large enough value,
then the conclusion at this point would be “no feasible solution”.

(d) fbest gets updated in Step 2g only by ε-feasible points. Feasible points are less frequently
encountered by the algorithm when εh and εg are smaller.

We note that the presence of constraints also increases chances of losing more global solu-
tions. Therefore, it likely reduces success rate of the algorithm. Actually both the standard
interval algorithm and the new interval-based algorithm suffer degradation of overall effi-
ciency due to one common scenario, that is, the algorithms do not encounter enough feasible
solutions at early stages. This scenario is very likely to occur when equality constraints are
present. In that situation, not enough boxes can be deleted based on the deletion conditions.
This forces a significant increase in memory requirement in the standard interval algorithm.
Since the new memoryless algorithm does not allow for extra memory, it may be forced to
lose all the global solutions by mistakenly preferring a lower infeasible y-value over a higher
best feasible y-value. We are still investigating other strategies concerning this issue.

4 Numerical results

In our implementation of algorithms 1 and 2 (as well as the other ones used for comparison),
several other acceleration devices are incorporated whenever appropriate.

Lp = a primary list of boxes that represents the remaining region to be searched.

123



J Glob Optim (2010) 47:247–271 255

Ls = a saved list of boxes that are not deleted but do not need to be further processed (i.e.
inactive) according to some prescribed tolerances (εbox, εf ) listed below.

εbox = a small box size threshold. Any active box V with size Wid(V) less than εbox will
be moved from Lp to Ls.

εf = a small threshold of deviation of the objective function values over a box. Any active
box with the fluctuation of the objective function value less than εf will be stored into Ls as
well.

nfmax = the maximum number of function (f(.) or F(.)) calls allowed. It is checked only
once for every certain number of iterations. This limit is relaxed when an algorithm continues
to improve its best solution.

cpumax = the maximum CPU time allowed. It is also checked once for every certain num-
ber of iterations.

An initial solution is supplied to each algorithm for every test example. It is used to initial-
ize fbest. However, when constraints are present, an infeasible initial solution is intentionally
selected which increases degree of difficulty and reduces success rate under the specified
stopping conditions. None of the initial solutions is close to the corresponding optimal solu-
tion.

We have used the Ichida-Fujii interval algorithm (IFIA, see [16]), and four (noninterval)
stochastic methods to solve the same test problems for comparison. The Ichida-Fujii interval
algorithm is the closest existing interval algorithm that utilizes a list as memory structure. The
four stochastic methods are a simulated annealing algorithm (SA, see [18]), a random search
algorithm (RS), a genetic algorithm (GA, see [11,19]), and a differential evolution genetic
algorithm (DEGA, see [28]). The first two of the four stochastic methods can be considered
as memoryless as well. But the other two also require a memory structure that is normally
called population in the context of the genetic algorithm. As usual, those four noninterval
algorithms do not have precise stopping conditions that would ensure immediate exit once
a globally optimal solution is found unless problem (1) is special enough. But within any
of the six algorithms we never intentionally used any special information of objective func-
tions or constraint functions although some of them are of fairly special structure (such as
linear, quadratic functions, or separable functions). Therefore, we have to use some artificial
stopping conditions such as these: (a) the number of calls of the objective function reaches
a prescribed limit; (b) the total computational time exceeds a specified limit; (c) the number
of generations is too big for GA or DEGA; (d) there is no improvement of fbest over a spec-
ified number of iterations. All such artificial stopping conditions may potentially result in a
premature termination of any algorithm. They may also result in some wastes of unnecessary
iterations after reaching an optimal solution. Unfortunately, these are just some of the pitiful
features of many noninterval algorithms. Some of the stopping conditions are also applied
to the interval algorithms for fair comparison.

The comparison results presented below are by no means comprehensive and 100% real-
istic. In fact, we find it difficult to do a very realistic comparison since each algorithm has a
number of its own control parameters that could affect its individual performance. It is difficult
and probably impossible to find “equivalent” sets of all control parameters for two different
algorithms. Performances of some algorithms are more sensitive to good values of control
parameters than others. But no attempt was made to find best values of control parameters
for each tested algorithm. Only reasonably guessed values are adopted. However, for each
example, we have used the same set of the shared parameters (such as nfmax and cpumax) and
the same initial solution for all algorithms. To further increase reliability of the test results on
stochastic methods, each example is run 5–40 times using randomly selected initial solutions
and seeds for the random number generator while the other parameters are kept fixed. The

123



256 J Glob Optim (2010) 47:247–271

mean and standard deviation information will be summarized. Thus, the results below could
still provide a good idea of effectiveness of the new algorithm in comparison with the others.

The two interval-based algorithms handle constraints directly and explicitly. But all the
stochastic algorithms that we have used for comparison do not have any special mechanism
built in to treat the constraints. Therefore, technically speaking, they can be compared with
the interval algorithms only for unconstrained problems. However, as done in [29], penalized
objective functions have been used to run the stochastic methods for the constrained problems
(thus #(g-calls) = #(h-calls) = #(f-calls)). For simplicity, we have used a common penalty
coefficient value of 100 for all the constraints and all the constrained examples although a
desirable penalty coefficient value is usually problem dependent. Additional runs might have
been done to calibrate its value. But we did not do that due to fairness concern. However,
constrained and unconstrained problems are separately compared so that we may get a better
idea of effect of constraints on the performance of the algorithms.

We also tested Hansen’s interval algorithm, a tree annealing algorithm [3], and two
versions of tabu search methods (see [7,26]). Hansen’s algorithm differs from Ichida-
Fujii’s algorithm in the way every new working box Y is selected. It is not as aggres-
sive as Ichida-Fujii’s algorithm to zoom in on one global solution. Instead, it attempts to
zoom in on all global solutions. As a consequence, it usually takes a lot more CPU time
as well as function calls to reach a desired termination condition. Our test results con-
firmed this. Under the hard stopping conditions we used, it performed poorly on a majority
of our test examples. The other three search methods also did not do well on the aver-
age under our hard stopping conditions. Thus their test results are not included in this
section.

As stated in Sect. 2, an inclusion function is usually required for solving each optimization
problem by using an interval method. Inclusion functions are not unique. We used natural
interval extensions when they are available. When they are not available, we use extended
custom made inclusion functions. In any event, no derivatives are ever used.

To test performance of the new algorithm (denoted by MLIA), we have used a large num-
ber of examples with or without constraints. They are selected more or less randomly from
several recent publications. Most of these examples have been widely used by other peo-
ple for testing their new optimization algorithms (e.g., [9,13,19,29,32]). Among those are:
Rastrigin function, Goldstein-Price function, piecewise function, Levy functions, Branin
function, Shubert function, our linear complementarity problem, our discrete Halmilton-
Jacobi-Bellman equation problem, De Jong function, Colville function, Griewank function,
Rosenbrock function, Zakharov function, sphere function, Schwefel functions, step function,
and Ackley function. Modified versions of some of those functions have been included as
well. Since algorithms 1 and 2 use midpoints as sample points, some original search domains
have been intentionally altered so that the exact optimal solution won’t be reached acciden-
tally as middle points are sampled at early stages. Other modifications are made to shift the
best known value of the objective function to zero or to make numerical overflows less likely
to occur in large dimensional cases. Among those examples, 15 of them are formulated with
flexible dimensions. We vary those dimensions as 4, 10, 40, 100, 200, 400, 600, 800, 1,000,
and 2,000. Different dimensions resulted in different test examples. The total number of
examples we have tested is well over 100. Their dimensions vary from 1 to 2,000. Many of
those examples are often regarded as difficult benchmark examples by other people. Obvi-
ously it is not a good idea to explicitly state all those examples. But the 15 examples with
variable dimensions are listed in the appendix since they are repeatedly used. Our preliminary
test results on all examples are presented below only in terms of their overall statistics (i.e.
means and standard deviations).

123



J Glob Optim (2010) 47:247–271 257

We have used two sets of various ranking scores to quantitatively measure the performance
of each algorithm and to compare different algorithms as a group. For individual algorithms,
we used three scores. One of them is a composite ranking score to quantitatively compare
various results. A composite ranking score Rq reflects the quality of the final solution in terms
of the objective function value as well as the maximum amount of constraint violation. More
precisely, we first calculate a ranking score rf based on the final best objective function value
(called fbest).

Objective function value: Ranking score rf (f∗ = 0)

fbest fbest < 0.001 fbest < 0.01 fbest < 1.0 fbest < 10 fbest ≥ 10
rf 1 (best) 2 3 4 5

Then we calculate a ranking score rc based on the maximum amount of constraint violation of
the final best solution Vc = max{|hi(xbest)|, max{0, gj(xbest)} : i = 1, . . ., m, j = 1, . . ., p}.
Constraint violation amount: Ranking score rc(V∗

c = 0)

Vc Vc < 0.01 Vc < 0.1 Vc < 1.0 Vc < 10 Vc ≥ 10
rc 1 (best) 2 3 4 5

The composite ranking score for solution quality is then defined as

Rq = max{rf , rc}.
The other two scores are the total number of objective function (f(.) or F(.)) calls (nf or nF)

as well as the total CPU time consumption (Rcpu). Those two scores would reflect the effec-
tiveness of algorithm. The total number of objective function calls is a major effectiveness
indicator. But CPU time would also include various CPU time overheads required by each
algorithm. For constrained optimization problems, each algorithm would require a certain
number of calls of the constraint functions. Those calls have been omitted when the number
of function calls is calculated mainly for this reason. Typically for our test examples con-
straint functions are relative simpler than the objective functions and the number of objective
function calls is usually more than the number of calls of constraint functions. However, the
total CPU time counts would include effects of constraint function calls. We also observe that
the original objective function and its inclusion function would require significantly different
computational efforts. So they are separately counted. Then additional numerical tests are
performed to estimate how many f-calls (say, NFf ) would be equivalent to a single F-call as
far as CPU time is concerned. This factor is then used to determine a combined number of
objective function calls.

Rnf = nf + NFf × nF. (3)

The total CPU times are recorded in milliseconds and presented below in seconds. They are
included as a reference and the actual CPU times might be less than the reported figures since
multiple applications could be executed at the same time for some test runs. Thus the numbers
of function calls would be more reliable indicators of efficiency of algorithms. Those three
scores are independently calculated for each algorithm without any reference to the other
algorithms.

To quantitatively compare six different algorithms as a group, we introduce another set of
ranking scores based on the three different types of scores described previously: the overall
quality score of solution, the number of function calls, and the total CPU count. However,
when two algorithms have close enough scores, their new group ranks will be considered the
same to account for various sources of uncertainties or randomness such as selection of test

123



258 J Glob Optim (2010) 47:247–271

examples. For example, one algorithm that was ranked 1 for testing one particular example
may not be ranked 1 again when another example is tested. More precisely, we define the
group quality rank as

Gq = 1 if Rq is the lowest or within 0.5 of the lowest,
Gq = 1 if Rq is within 0.1 of any existing Rq that has been ranked 1.
Gq = 2 is defined similarly among the remaining Rq values.
This process is continued until all the algorithms are ranked.

We define the group CPU rank as

Gcpu = 1 if Rcpu is the lowest or within five times of the lowest,
Gcpu = 1 if Rcpu is within twice of any existing Rcpu that has been ranked 1.
Gcpu = 2 is defined similarly among the remaining Rcpu values.
This process is continued until all the algorithms are ranked.

We define the group #(f-calls) rank similarly as

Gnf = 1 if Rnf is the lowest or within five times of the lowest,
Gnf = 1 if Rnf is within twice of any existing Rnf that has been ranked 1.
Gnf = 2 is defined similarly among the remaining Rnf values.
This process is continued until all the algorithms are ranked.

Thus if two algorithms have different group rankings, then we know that their performances
are significantly different (at least of about 1 order of magnitude in difference).

For each of the higher dimensional examples, run-time errors (such as numerical over-
flow) occur when the dimension exceeds a certain value. A call of the inclusion function
involves calculation of a lower bound and an upper bound of the objective function over a
working box. Since those bounds may be far from being tight, the chances of running into
numerical overflows are greater for interval-based algorithms. Typically, summations and
products appear in the analytical formula of f(.) in variable dimensions, and those values
easily reach numerical overflow threshold of machine numbers in a small personal computer
without special treatments of numerical infinities. Sometimes, exponential functions appear
in the objective function. Then it is more likely to have the overflow problem. When the
dimension is up to 2,000, we already observed a number of numerical overflow cases. How-
ever, we believe that the new algorithm is still applicable as long as numerical overflows
can be avoided by reformulation of the problem, by increase of precision of variables, or by
certain special treatments of numerical infinities. We are still investigating those ideas with
partial successes so far. In case of run-time errors, test results for that example would not be
included in the article.

Our examples are grouped according to their dimensions (1–6 for small dimensions,
9–13 for medium dimensions, 40–2,000 for higher dimensions) as well as their constraints
(constrained or unconstrained). Limits on the number of function calls and CPU time con-
sumption are set to different values for the different ranges of dimensions. Numerical results
of 12 different sets of examples are presented below. A separate table is displayed for each set
of examples. Each table is divided into two parts. The scores in the top half are merely based
on test results of each individual algorithm. The first column shows different algorithms used
for that set of examples. Each of the remaining columns contains the mean and standard devi-
ation values due to multiple examples as well as possible multiple runs of the same examples.
The second column indicates the average performance ranking score Rq for all the examples
in this set. Since each noninterval algorithm is run 5–40 times, those scores will be averaged
for any fixed example first. Then the average of those averaged values appears in the second

123



J Glob Optim (2010) 47:247–271 259

column. If only the minimum of 5–40 scores for each example is calculated, then the average
of the minimum values is presented in the third column. For interval-based algorithms, the
entries in second and third columns must be the same since only one run was done for each
example. The forth column lists the mean and standard deviation of nf = #(f-calls), the total
number of calls of the original objective function f(x) for each run. For interval-based algo-
rithms, we have split that number into two parts, nf and nF (the total number of calls of its
inclusion function F(X)). Usually, a call of F(X) is computationally more expensive than a
call of f(x) (in fact, usually at least several times more expensive). The next column displays
the mean and standard deviation of the total CPU time per run of each method that would
include real CPU time plus all the auxiliary times such as I\O times. However, we did not
count the CPU time if it takes less than one millisecond. But, the mean and standard devia-
tion of CPU times displayed may be less than one millisecond since they are mathematically
calculated from the individual CPU time values.

The bottom half of table shows various group rankings. The second, third, and sixth col-
umns are based on the second, third and sixth columns of the top half, respectively. The
data in the forth and fifth columns of the top half are combined into a single number dis-
played in the fifth column of the bottom half. Then a corresponding group ranking Gnf is
shown in the forth column. We used numerical experiments to estimate the number of f-calls
that is equivalent to a single call of F as far as CPU time is concerned. That number NFf

varies from 1.15 to 23.87 for our examples, which is used in (3) to combine nf and nF to
form Rnf in column five.

All of the test results have been generated by an AMD Turion 64 X2 mobile technology
TL-58/1.9 GHz laptop computer with 2 GB of RAM under 32 bit Windows Vista environ-
ment. As we present test results of each set of examples, we will also make some important
observations and offer brief discussions about the results.

Example set 1 (small dimensions, unconstrained) This set contains 41 examples of small
dimensions ranging from 1 to 6 that do not contain any constraints other than the bound con-
straints. Summary of the test results is shown in Table 1. The new algorithm MLIA is about
2 orders of magnitudes faster than its standard counterpart IFIA in terms of the number of
objective function calls while the accuracy is about 1 order of magnitude worse. In terms
of CPU time counts, MLIA is about 3 orders of magnitudes faster than IFIA, and 2 orders
of magnitudes faster than the others. This implies that for low dimensional problems, the
extra time required for algorithm IFIA to manage the memory data structure is significant.
Algorithm IFIA scored 1 in quality rank for 37 of the 41 examples, while algorithm MLIA
scored 1 for 22 times. Among the four noninterval algorithms, DEGA performed best in
terms of accuracy as well as efficiency. SA tends to exit prematurely sometimes (probably
due to a fast cooling schedule that was adopted). As a result, it used a much smaller number
of calls of f(x) than the other noninterval algorithms. Among all six algorithms, MLIA is
clearly the best in terms of convergence speed. In terms of quality of final solutions, MLIA
is ranked above the average.

Example set 2 (small dimensions, constrained) This set contains 20 examples of small
dimensions between 1 and 6 with additional equality and\or inequality constraints. Fourteen
of them have only inequality constraints. Now the overall ranking Rq would reflect the quality
of final solution in terms of its objective function value as well as the amount of constraint
violation. Summary of its test results is in Table 2. Generally speaking, the performance of
each algorithm is down compared with its performance on unconstrained problems. For the
interval-based algorithms, this is partially due to the fact that we used the worst case scenario
in the initialization step as pointed out in Sect. 3.

123



260 J Glob Optim (2010) 47:247–271

Table 1 Summary of test results for example set 1 (small dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 2.8, 1.4 1.8, 1.4 2287, 2185 0, 0 0.102, 0.085

GA 2.9, 1. 5 2.4, 1.5 50408, 21888 0, 0 3.045, 1.565

DEGA 1.5, 1.0 1.2, 0.6 11081, 15863 0, 0 0.244, 0.314

RS 2.9, 1.6 2.9, 1.6 43731, 14579 0, 0 0.934, 0.509

IFIA 1.2, 0.9 1.2, 0.9 3175, 9526 28, 7278 12.616, 46.179

MLIA 2.3, 1.6 2.3, 1.6 92, 73 96, 62 0.014, 0.014

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 3 2 2 2287 2

GA 3 2 3 50408 3

DEGA 1 1 2 11081 2

RS 3 3 3 43731 3

IFIA 1 1 2 18236 4

MLIA 2 2 1 458 1

Table 2 Summary of test results for example set 2 (small dim, constrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 4.0, 0.8 2.2, 1.2 2128, 1503 0, 0 0.093, 0.050

GA 3.1, 1.2 2.7, 1.4 53180, 11538 0, 0 3.137, 0.892

DEGA 1.3, 0.7 1.0, 0.0 10202, 15668 0, 0 0.175, 0.206

RS 3.1, 1.3 3.1, 1.3 46985, 8840 0, 0 0.942, 0.421

IFIA 2.0, 1.6 2.0, 1.6 1859, 5432 10050, 14950 57.689, 93.472

MLIA 3.4, 1.8 3.4, 1.8 18, 31 81, 56 0.010, 0.010

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 4 2 2 2128 2

GA 3 3 3 53180 3

DEGA 1 1 2 10202 2

RS 3 3 3 46985 3

IFIA 2 2 3 34869 4

MLIA 3 4 1 286 1

DEGA continues to be the best in quality ranks. Every other algorithm performed not as
good as for the unconstrained problems in example set 1. However, MLIA remains the best
in efficiency ranks. Although MLIA appears to be the second worst in terms of the average

123



J Glob Optim (2010) 47:247–271 261

Table 3 Summary of test results for example set 3 (medium dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 1.9, 1.2 1.3, 0.62 39189, 29067 0, 0 0.901, 0.684

GA 4.0, 0.03 4.7, 0.49 505675, 372767 0, 0 55.9, 43.5

DEGA 2.6, 1.6 2.2, 1.6 143016, 101377 0, 0 3.96, 3.17

RS 5.0, 0.0 4.9, 0.4 250001, 0.0 0, 0 16.4, 1.58

IFIA 1.6, 1.4 1.6, 1.4 37490, 82192 28468, 57973 1087, 2250

MLIA 1.9, 1.6 1.9, 1.6 401, 194 388, 102 0.062, 0.048

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 1 1 2 39189 2

GA 3 4 3 505675 3

DEGA 2 3 2 143016 2

RS 3 4 2 250001 3

IFIA 1 1 2 233671 4

MLIA 1 2 1 2135 1

quality ranks, it still scored 1 for 6 out of 20 examples while IFIA scored 1 for 13 times.
It is very clear that MLIA is the quickest to reach a stopping condition. In fact, the number
of function calls is even less than the number for unconstrained problems in Table 1. This
is probably due to the additional deletion condition based on the constraints. But the same
effect does not show up for IFIA because constraints might have negative effects as well,
as pointed out at the end of Sect. 3. Thus MLIA is capable of finding a solution quickly.
Some of the solutions are still globally optimal, while more are not globally optimal. Since
it takes so much less time to reach the conclusion, we would be able to spend some time to
do something else with the unsuccessful runs. In fact, MLIA could have been applied around
100 times as far as CPU time is concerned. With the starting intervals of those repeated
runs carefully selected, there would be a much better chance to reach a global solution. This
strategy is being investigated and meaningful results would be reported elsewhere. SA shows
a much worse average value of fbest due to many runs with premature exits. However, we
noticed that if only the best of 40 runs of SA were counted for each example, the average
ranking score of SA would be 2.2. To the contrary, RS would still have the average ranking
score of 3.1 under the same scheme. These results perhaps indicate these important findings.
(a) Globally optimal feasible solution is more likely to get lost in the memoryless algorithm
because infeasible objective function value may be smaller than globally optimal feasible
objective function value. (b) RS is not a good global search algorithm.

Example set 3 (medium dimensions, unconstrained) This set contains 15 unconstrained
examples of medium dimension 10. Summary of the test results is in Table 3. The new algo-
rithm is about 2 orders of magnitudes faster than its standard version in terms of the number
of objective function calls, and its CPU time count is decreased to 4 or 5 orders of mag-
nitudes, while it maintains a compatible degree of quality. For these 15 examples, MLIA’s
performance somehow exceeds our normal expectations. DEGA is clearly getting behind to
become an average performer.

123



262 J Glob Optim (2010) 47:247–271

Table 4 Summary of test results for example set 4 (medium dim, constrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 3.2, 1.3 2.0, 1.4 15357, 5800 0, 0 0.351, 0.166

GA 3.6, 1.6 2.6, 1.8 354164, 212202 0, 0 39.6, 25.2

DEGA 2.4, 0.7 1.0, 0.0 106536, 59264 0, 0 1.65, 0.814

RS 4.6, 0.6 4.6, 0.6 200821, 1070 0, 0 13.5, 7.69

IFIA 4.4, 0.5 4.4, 0.5 0, 0 198721, 11551 5436, 2.74

MLIA 3.8, 1.6 3.8, 1.6 17, 39 115, 129 0.0188, 0.0129

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 2 15357 2

GA 2 3 3 354164 3

DEGA 1 1 3 106536 2

RS 4 5 3 200821 3

IFIA 4 5 3 537936 4

MLIA 3 4 1 323 1

Example set 4 (medium dimensions, constrained) This set contains five constrained prob-
lems with dimensions ranging from 9 to 13. Four of them have equality constraints and the
other one has nine inequality constraints. Summary of its test results is in Table 4. Again, the
constraints very much affected every algorithm’s performance. Constraints made MLIA to
exit more quickly. The quality of solutions identified by MLIA is ranked slightly below the
average. But the speed to reach its final solution is clearly far better than the others. The tough
constraints made the standard interval algorithm IFIA worse than the memoryless version in
quality ranks. In fact, the data show that IFIA did not encounter any feasible solutions at all
after processing so many boxes.

Example set 5 (40-dimension, unconstrained) This set contains 15 unconstrained prob-
lems with dimensions all equal to 40. Summary of its test results is in Table 5. Now MLIA
becomes the best in all aspects of rankings. Three of the four noninterval algorithms (GA,
DEGA, RS) performed very poorly. Thus those three noninterval algorithms will no longer
be tested for the remaining sets of examples that are supposed to be more difficult than the
current set. Since those examples are of higher dimensions with everything else exactly the
same, we do not expect any better outcomes for those algorithms. We did not test enough
constrained problems of dimensions 40 or higher. So no results on constrained problems of
higher dimensions will be reported below.

Example set 6 (100-dimension, unconstrained) This set again contains 15 unconstrained
problems with dimensions all equal to 100. Summary of its test results is in Table 6. Nonin-
terval algorithms GA, DEGA, and RS were not tested due to their poor performance for the
previous set of examples. Thus we marked them with “poor” in the table and corresponding
rankings would be the worst. For the first time (actually the only time), CPU time count of
another algorithm (SA) beats MLIA’s. This is somewhat not expected. But a closer look at
the original output files reveals that one of the 15 examples will run into numerical overflow

123



J Glob Optim (2010) 47:247–271 263

Table 5 Summary of test results for example set 5 (40-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 2.7, 1.5 2.1, 1.3 5.08e6, 3.25e6 0, 0 16.0, 25.5

GA 5.0, 0.0 4.9, 0.3 1.45e7, 2.91e6 0, 0 2611, 152

DEGA 5.0, 0.0 4.9, 0.3 1.03e7, 0 0, 0 45.2, 64.9

RS 5.0, 0.0 4.9, 0.3 500001, 0 0, 0 144, 62.9

IFIA 2.0, 1.7 2.0, 1.7 39021, 66024 32761, 53983 1452, 2490

MLIA 2.1, 1.7 2.1, 1.7 1553, 856 1460, 543 5.05, 17.8

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 1 3 5.08e6 1

GA 3 2 3 1.45e7 3

DEGA 3 2 3 1.03e7 2

RS 3 2 2 500001 2

IFIA 1 1 2 279374 3

MLIA 1 1 1 10871 1

Table 6 Summary of test results for example set 6 (100-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 2.9, 1.6 2.4, 1.7 420188, 112658 0, 0 337, 1180

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 2.1, 1.8 2.1, 1.8 24752, 43914 24841, 43877 1696, 3016

MLIA 2.3, 1.9 2.3, 1.9 3293, 1540 3361, 1572 663, 2558

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 1 2 420188 1

GA 3 2 3 Poor 3

DEGA 3 2 3 Poor 3

RS 3 2 3 Poor 3

IFIA 1 1 2 143405 2

MLIA 1 1 1 24396 1

when its dimension is increased to the next value of 200. At the current dimension, that exam-
ple behaved so badly that SA had to stop after reaching the preset limit on nf , while IFIA
and MLIA had to stop after reaching the preset limit on CPU time. If that example had been

123



264 J Glob Optim (2010) 47:247–271

Table 7 Summary of test results for example set 7 (200-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 3.2, 1.5 2.8, 1.8 545247, 116822 0, 0 79.1, 86.5

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 1.9, 1.7 1.9, 1.7 25442, 35355 25658, 35276 1202, 22

MLIA 2.1, 1.8 2.1, 1.8 7057, 2706 7230, 2682 13.5, 19.6

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 2 545247 2

GA 3 3 3 Poor 4

DEGA 3 3 3 Poor 4

RS 3 3 3 Poor 4

IFIA 1 1 1 238970 3

MLIA 1 1 1 78849 1

omitted, (CPUmean, CPUSD) values for SA, IFIA, and MLIA would have been (32.9, 29.4 s),
(1170, 2312 s), and (2.63, 2.0 s), respectively. Again, MLIA becomes the fastest very clearly.
But in any event, MLIA is still a lone top performer in terms of the number of function calls,
and offered better quality solutions than SA. SA took over 56 h to get the reported numerical
results. We also observed that both quality and efficiency of SA on different runs do not vary
significantly. Thus, for each of the remaining sets of examples of higher dimensions, SA will
be run only 5 times in order to keep the total run time under control.

Example set 7 (200-dimension, unconstrained) This set contains 14 unconstrained prob-
lems with dimensions all equal to 200. Summary of its test results is in Table 7. MLIA and
IFIA are close in quality of solutions. But MLIA is clearly more efficient. Actually another
example was tested and a numerical overflow occurred under one of the two methods. For
fair comparison, the numerical results for that example are not included in this table. It is
expected that numerical overflows become more likely to occur when the dimension of prob-
lem exceeds 100. It is even worse under interval-based algorithms because they use loose
function bounds instead of the actual function values.

Example set 8 (400-dimension, unconstrained) This set contains 13 unconstrained prob-
lems with dimensions all equal to 400 after we have excluded two other functions due to
encounters of numerical overflows. Summary of its test results is in Table 8. We note that
the average quality of final solutions under both interval-based algorithms show a sign of
improvement compared with the previous sets. That is due to the fact that both interval-
based algorithms received bad scores for those omitted examples before numerical overflows
occurred.

Example set 9 (600-dimension, unconstrained) This set contains ten unconstrained prob-
lems with dimensions all equal to 600. Summary of its test results is in Table 9. Again, better
quality scores are observed for interval-based algorithms because more “hard” examples have

123



J Glob Optim (2010) 47:247–271 265

Table 8 Summary of test results for example set 8 (400-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 3.8, 1.3 3.3, 1.8 597258, 65346 0, 0 202, 341

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 1.6, 1.5 1.6, 1.5 29506, 29107 29878, 28970 1484, 2293

MLIA 1.8, 1.8 1.8, 1.8 13553, 5210 13893, 5164 75.9, 147

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 1 597258 1

GA 3 3 2 Poor 3

DEGA 3 3 2 Poor 3

RS 3 3 2 Poor 3

IFIA 1 1 1 376934 2

MLIA 1 1 1 154650 1

been dropped due to their numerical overflows. But the quality of SA continues to deteriorate
despite the dropouts. This may prove that SA is more susceptible to dimension increase than
the interval methods.

Example set 10 (800-dimension, unconstrained) This set contains eight unconstrained
problems of dimensions all equal to 800. Summary of its test results is in Table 10.

Example set 11 (1,000-dimension, unconstrained) This set contains only six unconstrained
problems with dimensions all equal to 1,000. Summary of its test results is in Table 11. It
is interesting to observe that the solution quality of MLIA exceeds that of IFIA while the
number of functions calls is getting closer. However, the CPU time counts still differ by
at least one order of magnitude. This implies a significant overhead in CPU time when a
memory structure is created and constantly updated.

Example set 12 (2,000-dimension, unconstrained) This final set also contains six uncon-
strained problems with dimensions all equal to 2,000. Test results are summarized in Table 12.
It is observed that the increased computational demand for IFIA in this large dimensional
case resulted in more frequent run-time errors. Such errors prevented IFIA from reaching a
final solution for five out of the six examples. This shows an additional benefit of MLIA over
IFIA. SA is also tested and all the runs resulted in poor solutions.

Now we rank the performance of six algorithms based on test results of first 11 different
sets of examples. Example set 12 is not included in this ranking because Table 12 is far from
complete. Table 13 shows the overall quality ranking scores Gq of the algorithms. On the
average of so many examples, our new memoryless interval-based algorithm MLIA is shown
to be very compatible with the standard interval algorithm IFIA as far as the quality of the
final solutions is concerned. Table 14 shows an important efficiency ranking based on the
total effective number of function calls Gnf . It is this ranking that clearly shows a significant
advantage of MLIA over all the other methods.

123



266 J Glob Optim (2010) 47:247–271

Table 9 Summary of test results for example set 9 (600-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual Ranks

SA 4.1, 0.9 3.0, 1.9 618323, 28261 0, 0 421, 755

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 1.0, 0.0 1.0, 0.0 29159, 26917 29881, 26920 1503, 2113

MLIA 1.3, 0.9 1.3, 0.9 18879, 7727 19541, 7764 244, 554

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 1 618323 1

GA 3 3 2 Poor 3

DEGA 3 3 2 Poor 3

RS 3 3 2 Poor 3

IFIA 1 1 1 445959 2

MLIA 1 1 1 243398 1

Table 10 Summary of test results for example set 10 (800-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 4.2, 0.8 2.8, 2.0 600693, 32343 0, 0 205, 290

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 1.3, 0.7 1.3, 0.7 29649, 27693 30851, 28016 1650, 3023

MLIA 1.4, 1.1 1.4, 1.1 22524, 9663 23626, 10054 134, 81.4

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 1 600693 1

GA 3 3 2 Poor 3

DEGA 3 3 2 Poor 3

RS 3 3 2 Poor 3

IFIA 1 1 1 447287 2

MLIA 1 1 1 278660 1

123



J Glob Optim (2010) 47:247–271 267

Table 11 Summary of test results for example set 11 (1000-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA 4.9, 0.3 4.8, 0.4 500002, 0 0, 0 226, 352

GA Poor Poor Poor 0, 0 Poor

DEGA Poor Poor Poor 0, 0 Poor

RS Poor Poor Poor 0, 0 Poor

IFIA 1.7, 1.6 1.7, 1.6 35000, 30775 37001, 31223 2857, 4868

MLIA 1.5, 1.2 1.5, 1.2 267, 13969 28634, 14730 215, 133

Method avg-Gq min-Gq Gnf Rnf Gcpu

Relative group ranks

SA 2 2 1 500002 1

GA 3 3 2 Poor 3

DEGA 3 3 2 Poor 3

RS 3 3 2 Poor 3

IFIA 1 1 1 580876 2

MLIA 1 1 1 372734 1

Table 12 Summary of test results for example set 12 (2,000-dim, unconstrained)

Method avg-Rq min-Rq nf : #(f-calls) nF: #(F-calls) Rcpu: CPU time (s)

Individual ranks

SA, GA, DEGA, RS: (all poor)

IF 4.3, 1.6 4.3, 1.6 n/a n/a n/a

MLIA 1.7, 1.6 1.7, 1.6 24809, 12840 47167, 23192 654, 479

Method avg-Gq min-Gq Gnf Rnf Gncpu

Relative group ranks

SA, GA, DEGA, RS: (all poor)

IF 2 2 n/a n/a n/a

MLIA 1 1 1 381034 1

5 Final comments and conclusions

In conclusion, the major observed advantages of the new algorithm include:

(a) It is more robust than a conventional interval method as well as noninterval methods.
You can set up its parameters so that the algorithm would perform relatively well for
a large variety of test problems. For a conventional interval method, parameter values
are more sensitive to test problems (mostly noticeably to the magnitude of problem
dimension).

123



268 J Glob Optim (2010) 47:247–271

Table 13 Overall quality score Gq of algorithms (1 = best)

Gq score SA GA DEGA RS IFIA MLIA

Set 1 3 3 1 3 1 2

Set 2 4 3 1 3 2 3

Set 3 1 3 2 3 1 1

Set 4 2 2 1 4 4 3

Set 5 2 3 3 3 1 1

Set 6 2 3 3 3 1 1

Set 7 2 3 3 3 1 1

Set 8 2 3 3 3 1 1

Set 9 2 3 3 3 1 1

Set 10 2 3 3 3 1 1

Set 11 2 3 3 3 1 1

Mean, SD 2.18, 0.75 2.91, 0.30 2.36, 0.92 3.09, 0.30 1.36, 0.92 1.45, 0.82

Final rank 3 5 4 6 1 2

Table 14 Overall efficiency score Gnf of algorithms (1 = best)

Gnf score SA GA DEGA RS IFIA MLIA

Set 1 2 3 2 3 2 1

Set 2 2 3 2 3 3 1

Set 3 2 3 2 2 2 1

Set 4 2 3 3 3 3 1

Set 5 3 3 3 2 2 1

Set 6 2 3 3 3 2 1

Set 7 2 3 3 3 1 1

Set 8 1 2 2 2 1 1

Set 9 1 2 2 2 1 1

Set 10 1 2 2 2 1 1

Set 11 1 2 2 2 1 1

Mean, SD 1.73, 0.65 2.64, 0.50 2.36, 0.05 2.45, 0.52 1.72, 0.79 1, 0

Final rank 3 6 4 5 2 1

(b) It is a deterministic derivative free global optimization method. Typically, a determinis-
tic global optimization method requires keeping track of partition of the search domain.
But this algorithm is memoryless. This memoryless feature would allow the algorithm
to solve large scale optimization problems that might be insolvable by other methods
due to lack of enough computational resources (memory space and CPU time).

(c) It reaches a final solution a lot more quickly than all the other algorithms that have
been tested. Furthermore, there is a good chance for the final solution to be a very good
estimate of a globally optimal solution of the original problem. Since it is so quick to
reach a final solution, there is a lot of time saved for potentially conducting additional
searches in case the current final solution is not satisfactory.

123



J Glob Optim (2010) 47:247–271 269

We also realize some disadvantages of the memoryless algorithm:

(a) Clearly it cannot locate all the global solutions.
(b) Another noticeable concern about the new algorithm is that its convergence to a global

solution is theoretically guaranteed under a stronger assumption on the inclusion func-
tion. When such assumption is not satisfied, all the global solutions could be lost.

Not every feature of the new algorithm has been extensively tested yet. We are constantly
improving it as more analysis and more tests are done. Nevertheless, the preliminary results
are encouraging and show a good promise for it to become one of practical effective global
optimization methods.

Acknowledgments The author is grateful to the AMA Department of Hong Kong Polytechnic University
for various support while this research was partially carried out there, and to two anonymous referees for the
valuable comments and suggestions that greatly improved the presentation of the paper.

Appendix: Test examples with variable dimensions

1. Modified Rosenbrock function over [−100, 100]n

f(x) =
n−1∑

i=1

[
100(xi+1 − x2

i )2 + (1 − xi )
2].

2. Zakharov function over [−9, 11]n

f(x) =
n∑

i=1

x2
i +

(
0.5

n∑

i=1

i xi

)2

+
(

0.5
n∑

i=1

i xi

)4

.

3. Sphere function over [−95, 105]n

f(x) =
n∑

i=1

x2
i .

4. Schwefel function 2.22 over [−10, 8]n

f(x) =
n∑

i=1

|xi | +
n∏

i=1

|xi |.

5. Schwefel function 1.2 over [−10, 8]n

f(x) =
n∑

i=1

⎛

⎝
i∑

j=1

x j

⎞

⎠
2

6. Schwefel function 2.21 over [−100, 80]n

f(x) = max{|xi| : i = 1, . . ., n}.
7. Schwefel function 2.26 over [−500, 600]n

f(x) = −
n∑

i=1

xi sin
(√|xi |

)
+ 418.98288727n.

123



270 J Glob Optim (2010) 47:247–271

8. Step function over [−100, 200]n

f(x) =
n∑

i=1

([xi + 0.5])2.

9. Generalized Rastrigin function over [−6.12, 5.12]n

f(x) =
n∑

i=1

[
x2

i − 10 cos(2πxi ) + 10
]
.

10. Ackley function over [−31, 33]n

f(x) = −20 exp

⎧
⎨

⎩−0.2

[
n∑

i=1

x2
i /n

]1/2
⎫
⎬

⎭ − exp

{
n∑

i=1

cos(2πxi )/n

}
+ 22.7182818

11. Modified Griewank function over [−590, 600]n

f(x) = 1 +
n∑

i=1

x2
i /4000 − �n

i=1 cos(xi/
√

i).

12. Another modified Griewank function over [−590, 600]n

f(x) =
n∑

i=1

x2
i /4000 −

n∏

i=1

[
2 + cos

(
xi/

√
i
)]

/3 + 1.

13. Locatelli’s modification #2 of Griewank function over [−590, 600]n

f(x) =
n∑

i=1

x2
i /4000 −

n∑

i=1

ln
[
2 + cos

(
xi/

√
i
)]

+ n ln 3.

14. Locatelli’s modification #3 of Griewank function over [−590, 600]n

f(x) =
n∑

i=1

x2
i /4000 −

n∑

i=1

ln

⎡

⎣2 + cos

⎛

⎝
n∑

j=1

Aijxj

⎞

⎠

⎤

⎦ + n ln 3,

where Aij = 1 if i 	= j, and Aii = n + 1.

15. Neumaier rational function over [−100, 100]n

f(x) = 1 + fk, if x = x(k) for some k

1 +
n∑

k=1

(2fk + rk(x))/rk(x)2/

n∑

k=1

2/rk(x)2otherwise,

where for i, j, k = 1, …, n

x(k)
i = 0.1 (k − 1) + (i − 1) sin(i − 1),

fk = − cos (0.1(k − 1)) ,

R(k)
ij = i δij,

rk(x) =
∣∣∣
∣∣∣R(k)

(
x − x(k)

)∣∣∣
∣∣∣
2
.

123



J Glob Optim (2010) 47:247–271 271

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
2. Ali, M.M., Torn, A., Viitanen, S.: A direct search variant of the simulated annealing algorithm for opti-

mization involving continuous variables. Comput. Oper. Res. 29, 87–102 (2002)
3. Bilbro, G.L., Snyder, W.E.: Optimization of functions with many minima. IEEE Trans. Syst. Man

Cybern. 21(4), 840–849 (1991)
4. Clausen, J., Zilinskas, A.: Subdivision, sampling, and initialization strategies for simplical branch and

bound in global optimization. Comput. Math. Appl. 44, 943–955 (2002)
5. Csallner, A.E.: Lipschitz continuity and the termination of interval methods for global optimization. Com-

put. Math. Appl. 42, 1035–1042 (2001)
6. Csallner, A.E., Csendes, T.: The convergence speed of interval methods for global optimization. Comput.

Math. Appl. 31, 173–178 (1996)
7. Cvijovic, D., Klinowski, J.: Tabu search: an approach to the multiple minima problem. Science 267,

664–666 (1995)
8. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag.

Sci. 15, 550–569 (1969)
9. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algo-

rithms. Springer, Berlin (1990)
10. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)
11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wes-

ley, Reading (1989)
12. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, NY (1992)
13. Hedar, A.R., Fukushima, M.: Derivative-free filter simulated annealing method for constrained continuous

global optimization. J. Glob. Optim. 35, 521–549 (2006)
14. Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10, 312–321 (1976)
15. Horst, R., Tuy, H.: Global Optimization, Deterministic Approaches. Springer, Berlin (1990)
16. Ichida, K., Fujii, Y.: An interval arithmetic method for global optimization. Computing 23, 85–97 (1979)
17. Kearfott, R.B.: A review of techniques in the verified solution of constrained global optimization prob-

lems. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations (El Paso, TX),
Applied Optimization, vol. 3, pp. 23–60. Kluwer, Dordrecht (1996)

18. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–
680 (1983)

19. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer, Ber-
lin (1996)

20. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Publication, Philadelphia (1979)
21. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM Publication, Philadel-

phia (2009)
22. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Appli-

cations 37. Cambridge University Press, Cambridge (1991)
23. Pardalos, P.M., Romeijn, E.: Handbook of Global Optimization—Volume 2: Heuristic Approaches.

Kluwer, Dordrecht (2002)
24. Pedamallu, C.S., Ozdamar, L., Csendes, T., Vinko, T.: Efficient interval partitioning approach for global

optimization. J. Glob. Optim. 42, 369–384 (2008)
25. Ratscheck, H., Rokne, J.: New Computer Methods for Global Optimization. Wiley, New York (1988)
26. Siarry, P., Berthiau, G.: Fitting of Tabu Search to optimize functions of continuous variables. Intern.

J. Numer. Methods Eng. 40(13), 2449–2457 (1997)
27. Skelboe, S.: Computation of rational interval functions. BIT 14, 87–95 (1974)
28. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over

continuous spaces. J. Glob. Optim. 11, 341–359 (1997)
29. Sun, M., Johnson, A.W.: Interval branch and bound with local sampling for constrained global optimiza-

tion. J. Glob. Optim. 33, 61–82 (2005)
30. Van Voorhis, T.: A global optimization algorithm using Lagrangian underestimates and the interval New-

ton method. J. Glob. Optim. 24, 349–370 (2002)
31. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, New York (1991)
32. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3,

82–102 (1999)
33. Zhang, X., Liu, S.: Interval algorithm for global numerical optimization. Eng. Optim. 40, 849–868 (2008)

123


	A fast memoryless interval-based algorithm for global optimization
	Abstract
	1 Introduction
	2 Standard interval method
	3 Memoryless interval-based algorithm and its convergence
	4 Numerical results
	5 Final comments and conclusions
	Acknowledgments
	Appendix: Test examples with variable dimensions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


